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The formulas of the quantum electrodynamics have been applied to calculate the spontaneous emission
rate of excited atom in dielectric microcavity. The results exhibit damping oscillating patterns which
depend sensitively on the scaling parameter and geometrical structure. Compared with the case that the
emitting atom is immersed in dielectric, the spontaneous emission rate is depressed obviously and the
center or the mean value of the oscillations is intimately related to the real refractive index of the local
position where the atom is. In order to explain this phenomenon, we utilize the closed-orbit theory to
deal with the classical trajectories of the emitted photon, and extract the corresponding frequencies of
the oscillations by Fourier transform. It is found that the oscillations can be represented in terms of the
closed-orbits of the photon motion constrained in dielectric microcavity, thus providing another perspective
on the spontaneous emission of atom sandwiched by dielectric slabs.
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It has been perceived that the spontaneous emission rate
of atom depends on the material environment since Pur-
cell’s pioneering work[1]. Modification of the spontaneous
emission rate has been experimentally shown for free
atoms[2−4], organic molecules[5] and Eu3+ complexes[6]

in solution, single-mode Er3+-doped tellurite fiber[7] and
Er3+-doped SiO2

[8]. This field has attracted much atten-
tion recently. With quantum electrodynamics (QED),
Urbach and Rikken calculated the spontaneous emis-
sion rate for the nonabsorbent dielectric film system[9].
The lifetime distribution for an assembly of atoms in in-
homogeneous electromagnetic environments has become
the most popular topic in several investigations and
played an important role in the atomic chip and optical
crystal[10−17]. Wang et al. investigated the spontaneous
emission rate of atoms near a dielectric interface and in-
side a dielectric slab with the closed-orbit theory[18,19].
Compared with the early work done in order to investi-
gate the case for a thin quantum well sheet enclosed by a
one-dimensional dielectric microcavity, the spontaneous
emission rate was calculated by QED formulas as func-
tions of a scaling variable measuring the overall size of
the system. The results exhibited damping oscillations
and rounded the real refractive index of dielectric mi-
crocavity if the local field and absorption effect had not
been considered. We present a general physical mecha-
nism for such oscillations[18,19] and give a visible physi-
cal image to interpret the spontaneous emission rate of
atom in dielectric microcavity based on the closed-orbit
theory which was created by Du and Delos[20,21]. The
frequencies of the oscillations are extracted by Fourier
transformation, which consist with the classical actions
of the emitted photons along the closed-orbit trajectory.
One closed-orbit of the emitted photon going out from
and returning back to the emitting atom contributes an
oscillatory peak in the spontaneous emission rate.

The model structure under consideration is shown in
Fig. 1. A microcavity with real refractive index n1 is
sandwiched by two semi-infinity nonabsorbent dielectric
slabs whose real refractive indices are n2 and n3, respec-
tively. All the dielectric materials are assumed to be
nonmagnetic. In a Cartesian coordinate system, the ori-
gin is in the middle of the microcavity while the z axis
is perpendicular to the interfaces. The departure of an
excited atom from the upper (lower) boundary is marked
with d1 (d2). So the width of the dielectric microcavity
is d = d1 + d2.

According to Fermi’s golden rule, the QED formula for
the spontaneous emission rate is
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where e denotes the electron charge, c is the speed

of light in vacuum, ~D12 is the dipole matrix element
of the atomic transition. Since the orientation of the
atomic dipole moment is random for the moment, then
F j(z) = [F x(z)+F y(z)+F z(z)]/3, where F j (j = x, y, z)

Fig. 1. Model structure of emitting atom in a microcavity
system. nj (j = 1, 2 and 3) are real refractive indices. The
symmetric case n2 = n3 is investigated in this paper.
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are the jth components of the zero-point fluctuation of
electromagnetic field. In this model, the formula could
be given by
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where k0 = ω0/c is the wave number of the emitted light
in vacuum, ε0 is the vacuum permittivity, E(~r) is the
electric field evaluated at the position of emitting atom
for various modes, and s (p) indicates the TE (TM) po-
larization states whose electric (magnetic) field vector

is parallel to the (x, y) plane, and kjz =
√

k2
0n2

j − β2

(j = 1, 2, 3, respectively for the three different dielectric
materials). Further details can be found in Ref. [9].

In the following, we use F to represent the relative
spontaneous emission rate F (z)/Fv, where Fv is the zero-
point fluctuation of the electromagnetic field in vacuum
at the position of the excited atom and can be expressed
as

Fv =
h̄ω3

0

6π2ε0c2
. (3)

In order to conveniently describe the damping oscil-
lations in the spontaneous emission rate, we introduce
R = (d2 − d1)/(d1 + d2) to denote the emitting atom’s
position relative to the upper and lower interfaces and
introduce a scaling variable α to measure the overall size
of the system. For any R, we calculate the spontaneous
emission rate F i(α) (i = x, y, z) by Eqs. (1) and (2) in
which d1 = αd0

1, d2 = αd0
2, d = αd0, where d0 = λ0 = 510

nm is a typical size of the system. It is easy to show

d0
1 = (1−R)d0

2 , d0
2 = (1+R)d0

2 , and the atomic coordination

z is given by z = αRd0/2.
We set n1 = 1.00 for vacuum and n2 = n3 = 1.49 for

the dielectric media. In Fig. 2, the calculated sponta-
neous emission rate F is plotted as a function α with a
step size ∆α = 0.0035 for the three situations R = 0,
1
3 , and 3

4 , respectively. In the figure, dotted line de-
notes F x(α) and dashed line represents F z(α), while the
solid line stands for the average of the three directions,
(2F x(α) + F z(α))/3. In Fig. 2(a), the emitting atom is
placed at the origin, and the emission rate presents a
simple sinusoidal-damping oscillations; in Fig. 2(b), the
distance from the emitting atom to the upper interface is
one third of the dielectric microcavity width, and some
oscillations with higher frequencies appear; in Fig. 2(c),
the emitting atom is further moved up, whose distance
to the upper interface is one eighth of the microcavity
width, and the damping oscillations take on much more
complex and consist of more higher frequencies. From
Figs. 2(a)—(c), it is obvious that the center or the mean
value of the damping oscillations is related to the real
refractive index of the dielectric microcavity.

According to the closed-orbit theory, the formula of the
spontaneous emission rate reads

F (α) = F0 +
∑

i

Ai sin[Si(α) + ϕi], (4)

Fig. 2. Calculated spontaneous emission rate F (relative to
the value in vacuum) for the microcavity with n1 = 1.00,
n2 = n3 = 1.49. d = αd0 is the microcavity width, where
d0 = λ0 = 510 nm. (a) R = 0, (b) R = 1

3
, (c) R = 3

4
.

where F0 represents a background term and its value is
equal to n1, which can be attributed to the free emission
process implicating that when the emitted photon leaves
the emitting atom and never returns. The sum is over
all classical orbits of emitted photon going out from and
returning back to the emitting atom; the emitted photon
obeys the laws of reflection and refraction when it travels
in classical trajectories; Si(α) = kLi is the action of the
photon along the ith closed-orbit, where k is the wave
number, and Li is the geometric length of the closed or-
bit; the amplitude Ai varies slowly and is a measure of
the intensity of the returning group of photon wave. The
phase accumulations, including Maslov corrections, are
denoted in ϕi.

In order to extract the frequencies in the damping os-
cillations of the spontaneous emission rate, we follow the
standard approach in the closed-orbit theory. Firstly we
remove the background term F0 and then multiply the
result by α before Fourier transform. We define

F ′(α) = [
F (α)

F0
− 1]α, (5)

and perform Fourier transform on F ′:

F̃ (γ) =
∑

i

F ′(αi)e
−iγαi∆α, (6)

where the step is ∆α = 0.0035 in our calculations.
Fourier transforms of the spontaneous emission rate

F (α) are displayed in Fig. 3. In Fig. 3(a), two peaks
appear at γ = 6.26 and γ = 12.53; there are three species
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Table 1. Frequencies of Oscillations Compared with Actions of Photons’ Closed Orbits

R 0 1/3 3/4

Closed Orbit i 1st & 2nd 3rd & 4th 1st 2nd 3rd & 4th 1st 2nd 3rd & 4th

QED γ 6.26 12.53 4.17 8.34 12.56 1.49 11.00 12.54

S0

i 6.28 12.56 4.16 8.37 12.56 1.57 10.99 12.56

Fig. 3. Fourier transform of the spontaneous emission rate
F (α) in Fig. 2. The responsible photon closed orbits are
shown schematically near the peaks. (a) R = 0, (b) R = 1

3
,

(c) R = 3

4
.

peaks at γ = 4.17, 8.34, and γ = 12.58, respectively in
Fig. 3(b); and in Fig. 3(c), the first and second peaks
move to γ = 1.49, 11.00 while the last one is located at
γ = 12.54.

The closed-orbit theory predicts the ith peak at S0
i cor-

responding to Si = αS0
i = k0Li. The actions of emitted

photon around closed orbits can be specified by peaks’
positions. In Table 1, we show the actions of the pho-
ton’s closed orbits compared with the frequencies of the
damping oscillations by Fourier transform when R = 0,
1
3 , and 3

4 , respectively.
The physical image can be interpreted as follows. The

emitted photon is created near the atom when the atom
decays from the excited states to lower states. This
photon leaves away from the atom to a large distance
and returns to the atom when it collides with the inter-
face between different media, thus contributes a visible
oscillation in the spontaneous emission rate. The trajec-
tory of the photon forms one closed orbit. The damping
oscillations in the spontaneous emission rate in Fig. 2 can

Fig. 4. Average of the spontaneous emission rate in Fig. 3(a)
which is magnified at γ = 18.90. The responsible photon
closed orbits are shown schematically near the peaks.

be regarded as quantum interference between the emitted
photon wave and the photon wave returning back to the
emitting atom. Each closed orbit produces an oscillatory
contribution to the rate with a characteristic frequency
determined by its action.

We actually predict peaks present again as γ increases.
Figure 4 is the magnified part of the average of the spon-
taneous emission rate in Fig. 3(a) near γ = 18.90. Peak
appears at γ = 18.93 while the action of the photon is
S1

1,2 = 6πn1 = 18.84. This accords with our predic-
tion. The emitted photon collides with the interfaces
more than two times. Longer closed orbits usually corre-
spond to higher frequencies with smaller amplitude oscil-
lations. Their frequencies are much higher while ampli-
tudes of the damping oscillations are much smaller. So
these peaks are too weak to be seen in Fig. 3. It seems
in line with the physical intuition.

In conclusion, the spontaneous emission rate in dielec-
tric environments is calculated with QED. As the scale
parameter of the system is varied, the result displays
damping oscillations around the real refractive index of
the dielectric microcavity. From the closed-orbit theory,
each closed orbit produces a visible oscillation. The fre-
quencies are extracted by Fourier transform, which is
induced by the outgoing and incoming electromagnetic
waves propagating along a closed orbit. The positions
where the peaks appear agree well with the actions of
the emitted photon. This study gives a visible physi-
cal insight into the spontaneous emission of the excited
atom. It is a successful sample by using the closed-orbit
theory to represent the oscillations in the spontaneous
emission rate of atom in dielectric microcavity.
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